Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis(4-aminobenzenesulfonato- κN)bis(N, N-di-methylformamide- κ O)copper(II)

Yun-Long Fu, ${ }^{\text {a }}$ Min-Na Sun, ${ }^{\text {a }}$ Xiao-Fang Zhi ${ }^{\text {a }}$ and Seik Weng $\mathrm{Ng}^{\mathrm{b}}{ }^{*}$

${ }^{\mathrm{a}}$ School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.033$
$w R$ factor $=0.134$
Data-to-parameter ratio $=15.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The Cu atom in the title zwitterionic complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{6} \mathrm{H}_{6}-\right.\right.$ $\left.\mathrm{N}_{2} \mathrm{O}_{3} \mathrm{~S}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{2}$], lies on a centre of inversion in a square plane formed by two N and two O atoms. Adjacent zwitterions are linked by a long $\mathrm{Cu}-\mathrm{O}$ interaction of 2.465 (2) \AA to form a linear chain that runs along the b axis of the triclinic unit cell. The chain motif is consolidated by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

The 4 -aminobenzoate anion can bind to transition metals through the amino as well as the carboxylate ends, as noted from the diaqua copper and manganese derivatives, $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{SO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{SO}_{3}\right)_{2^{-}}\right.$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$] (Gunderman et al., 1996). In two further derivatives, the isostructural compounds $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{SO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$-$2 \mathrm{H}_{2} \mathrm{O}$ (Shakeri \& Haussuhl, 1992a) and $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{SO}_{3}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Shakeri \& Haussuhl, 1992b), both ends engage in coordination.

(I)

The reaction of the 4 -aminobenzoate anion with copper(II) gives the title compound, (I), in which the anion coordinates through the amino group. The O atoms of two dimethylformamide (DMF) solvent molecules complete the centrosymmetric square-planar geometry. The geometry is distorted towards octahedral owing to the long copper-sulfonate bond (Table 1, Fig. 1). This bond gives rise to a linear chain, which is consolidated by intra-chain $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The binding mode of the anion in the present bis(DMF)-copper compound is similar to that found in the diaquacopper compound, whose geometry is tetragonally distorted from a square plane owing to a long $\mathrm{Cu}-\mathrm{O}$ distance of 2.420 (2) \AA (Gunderman et al., 1996).

Experimental

Copper(II) nitrate trihydrate ($0.224 \mathrm{~g}, 1 \mathrm{mmol}$) was dissolved in excess dimethylformamide (5 ml) along with 4 -aminobenzenesulfonic

Received 12 July 2006 Accepted 19 July 2006
acid $(0.346 \mathrm{~g}, 2 \mathrm{mmol})$. The solution was heated at 343 K for 7 d . Green plate-shaped crystals of (I) were isolated from the cooled solution in an 80% yield based on Cu .

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$
$M_{r}=554.09$
Triclinic, $P \overline{1}$
$a=7.1168$ (5) Å
$b=8.4491$ (6) \AA
$c=9.5294$ (6) \AA
$\alpha=87.033(1)^{\circ}$
$\beta=77.344$ (1) ${ }^{\circ}$
$\gamma=84.337(1)^{\circ}$

Data collection

Bruker SMART APEX areadetector diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.797, T_{\text {max }}=0.953$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.134$
$S=1.13$
2426 reflections
161 parameters
$V=556.09(7) \AA^{3}$
$Z=1$
$D_{x}=1.655 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=1.22 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Plate, green
$0.20 \times 0.16 \times 0.04 \mathrm{~mm}$

H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0798 P)^{2}\right. \\
&+0.4598 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.43 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.40 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 1$	$2.047(2)$	$\mathrm{Cu} 1-\mathrm{O} 4$	$1.994(2)$
$\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{ii}}$	$2.465(2)$		
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{O} 4$	$92.87(8)$	$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	$93.43(8)$
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{O} 4^{\mathrm{i}}$	$87.13(8)$	$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{N} 1$	$86.64(9)$
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{N} 1$	$86.57(9)$	$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	$93.36(9)$

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x, y+1, z$.

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 2 \mathrm{n} \cdots \mathrm{O}_{2} 2^{\mathrm{ii}}$	$0.85(1)$	$2.17(1)$	$3.018(3)$	$176(3)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{n} \cdots \mathrm{O}^{2 \mathrm{iv}}$	$0.85(1)$	$2.21(2)$	$2.987(3)$	$152(4)$

Symmetry codes: (ii) $x, y+1, z$; (iv) $-x+2,-y,-z+1$.
Carbon-bound H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$, and were included in the refinement in the

Figure 1
The coordination geometry of the Cu atom of (I), with the atomnumbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii. [Symmetry codes are as in Table 1; additionally: (iii) $-x+1,-y,-z+1$.]
riding-model approximation, with $U(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ or $1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methy }}\right)$; the methyl groups were rotated to fit the electron density. The amino H atoms were located in a difference Fourier map, and refined with a distance restraint of $\mathrm{N}-\mathrm{H}=0.85$ (1) \AA; their displacement parameters were also refined.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the Natural Scientific Foundation Committee of Shanxi Province (grant No. 20041031) and the University of Malaya for generously supporting this study.

References

Bruker (2003). SAINT (Version 6.36A) and SMART (Version 6.36A). Bruker AXS Inc., Madison, Winsonsin, USA.
Gunderman, B. J., Squattrito, P. J. \& Dubey, S. N. (1996). Acta Cryst. C52, 1131-1134.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Shakeri, V. \& Haussuhl, S. (1992a). Z. Kristallogr. 198, 165-166.
Shakeri, V. \& Haussuhl, S. (1992b). Z. Kristallogr. 198, 167-168.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

