metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yun-Long Fu,^a Min-Na Sun,^a Xiao-Fang Zhi^a and Seik Weng Ng^b*

^aSchool of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.004 \text{ Å}$ R factor = 0.033 wR factor = 0.134 Data-to-parameter ratio = 15.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(4-aminobenzenesulfonato- κN)bis(N,N-dimethylformamide- κO)copper(II)

The Cu atom in the title zwitterionic complex, $[Cu(C_6H_6-N_2O_3S)_2(C_3H_7NO)_2]$, lies on a centre of inversion in a square plane formed by two N and two O atoms. Adjacent zwitterions are linked by a long Cu–O interaction of 2.465 (2) Å to form a linear chain that runs along the *b* axis of the triclinic unit cell. The chain motif is consolidated by N–H···O hydrogen bonds.

Comment

The 4-aminobenzoate anion can bind to transition metals through the amino as well as the carboxylate ends, as noted from the diaqua copper and manganese derivatives, $[Cu(H_2NC_6H_4SO_3)_2(H_2O)_2]\cdot 2H_2O$ and $[Mn(H_2NC_6H_4SO_3)_2(H_2O)_2]$ (Gunderman *et al.*, 1996). In two further derivatives, the isostructural compounds $[Co(H_2NC_6H_4SO_3)_2(H_2O)_2]\cdot 2H_2O$ (Shakeri & Haussuhl, 1992*a*) and $[Zn(H_2NC_6H_4SO_3)_2(H_2O)_2]\cdot (H_2O)_2]\cdot 2H_2O$ (Shakeri & Haussuhl, 1992*b*), both ends engage in coordination.

The reaction of the 4-aminobenzoate anion with copper(II) gives the title compound, (I), in which the anion coordinates through the amino group. The O atoms of two dimethyl-formamide (DMF) solvent molecules complete the centro-symmetric square-planar geometry. The geometry is distorted towards octahedral owing to the long copper–sulfonate bond (Table 1, Fig. 1). This bond gives rise to a linear chain, which is consolidated by intra-chain $N-H\cdots O$ hydrogen bonds. The binding mode of the anion in the present bis(DMF)–copper compound is similar to that found in the diaquacopper compound, whose geometry is tetragonally distorted from a square plane owing to a long Cu–O distance of 2.420 (2) Å (Gunderman *et al.*, 1996).

Experimental

© 2006 International Union of Crystallography All rights reserved Copper(II) nitrate trihydrate (0.224 g, 1 mmol) was dissolved in excess dimethylformamide (5 ml) along with 4-aminobenzenesulfonic

Received 12 July 2006

Accepted 19 July 2006

acid (0.346 g, 2 mmol). The solution was heated at 343 K for 7 d. Green plate-shaped crystals of (I) were isolated from the cooled solution in an 80% yield based on Cu.

V = 556.09 (7) Å³

 $D_r = 1.655 \text{ Mg m}^{-3}$

 $0.20 \times 0.16 \times 0.04 \text{ mm}$

4574 measured reflections

2426 independent reflections 2246 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 1.22 \text{ mm}^{-1}$

T = 295 (2) K

Plate, green

 $R_{\rm int}=0.016$

 $\theta_{\rm max} = 27.5^{\circ}$

Z = 1

Crystal data

 $\begin{bmatrix} Cu(C_6H_6N_2O_3S)_2(C_3H_7NO)_2 \end{bmatrix}$ $M_r = 554.09$ Triclinic, $P\overline{1}$ a = 7.1168 (5) Å b = 8.4491 (6) Å c = 9.5294 (6) Å $\alpha = 87.033$ (1)° $\beta = 77.344$ (1)° $\gamma = 84.337$ (1)°

Data collection

Bruker SMART APEX areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.797, T_{\max} = 0.953$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0798P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.033$	+ 0.4598P]
$wR(F^2) = 0.134$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.13	$(\Delta/\sigma)_{\rm max} = 0.001$
2426 reflections	$\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$
161 parameters	$\Delta \rho_{\rm min} = -0.40 \ {\rm e} \ {\rm \AA}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1

Selected geometric parameters (Å, °).

Cu1-N1 Cu1-O1 ⁱⁱ	2.047 (2) 2.465 (2)	Cu1-O4	1.994 (2)
$\begin{array}{c} O1^{ii} - Cu1 - O4\\ O1^{ii} - Cu1 - O4^{ii}\\ O1^{ii} - Cu1 - O4^{ii} \end{array}$	92.87 (8) 87.13 (8)	$O1^{ii}$ -Cu1-N1 ⁱ O4-Cu1-N1	93.43 (8) 86.64 (9)
O1"-Cu1-N1	86.57 (9)	O4-Cu1-N1	93.36 (9)

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, y + 1, z.

Table 2

Hydrogen-bond geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
	0.85 (1) 0.85 (1)	2.17 (1) 2.21 (2)	3.018 (3) 2.987 (3)	176 (3) 152 (4)
			4	

Symmetry codes: (ii) x, y + 1, z; (iv) -x + 2, -y, -z + 1.

Carbon-bound H atoms were placed in calculated positions, with C–H = 0.93–0.96 Å, and were included in the refinement in the

Figure 1

The coordination geometry of the Cu atom of (I), with the atomnumbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii. [Symmetry codes are as in Table 1; additionally: (iii) -x + 1, -y, -z + 1.]

riding-model approximation, with $U(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C_{methyl})$; the methyl groups were rotated to fit the electron density. The amino H atoms were located in a difference Fourier map, and refined with a distance restraint of N-H = 0.85 (1) Å; their displacement parameters were also refined.

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

The authors thank the Natural Scientific Foundation Committee of Shanxi Province (grant No. 20041031) and the University of Malaya for generously supporting this study.

References

Bruker (2003). SAINT (Version 6.36A) and SMART (Version 6.36A). Bruker AXS Inc., Madison, Winsonsin, USA.

- Gunderman, B. J., Squattrito, P. J. & Dubey, S. N. (1996). Acta Cryst. C52, 1131–1134.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Shakeri, V. & Haussuhl, S. (1992a). Z. Kristallogr. 198, 165-166.

Shakeri, V. & Haussuhl, S. (1992b). Z. Kristallogr. 198, 167–168.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.